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We consider the flow of a viscous fluid past a spherical drop at moderate Reynolds numbers. 
We give the numerical solution of the Navier -Stokes  equation for the flow of the liquid inside 
and outside a drop subject to compatibility conditions at the boundary. 

The study of the motion of drops or gas bubbles in liquid media is closely associated with the problem 
of designing industrial chemical apparatus for many important problems in liquid extraction. 

In practice drops move at moderate Reynolds numbers (from several tens to several hundreds). Simi- 
la r  flow conditions have received little study. 

This paper is devoted to the solution of the problem of the flow of a viscous liquid past a single drop 
at moderate Reynolds numbers. It is assumed that the motion is uniform and rect i l inear  and that the drop 
retains its spherical form. 

The exact solution is known [1, 2] for Re << 1. On the other hand, for sufficiently large Reynolds 
numbers the problem of the flow past a gas bubble has been considered within the framework of hydrodyna- 
mic boundary layer  theory by Levich [3] and Moore [4]. For  a liquid drop similar  solutions were investi- 
gated by Chao [5] assuming that there was a boundary layer  at beth sides of the boundary of the drop. 

For  moderate Reynolds numbers an approximate solution was given in [6-9] of the problem of the flow 
past a solid sphere or a liquid drop using the Galerkin method. A critical review of the solutions obtained 
by the above authors can be found in [10]. In recent investigations Hamielec and his co-authors [11, 12] 
discussed the numerical solution of the Navier-Stokes  equations for flows With infinite (for a solid sphere) 
or zero (for a gas bubble) viscosity ratios at Reynolds numbers up to Re ~ 200. The solutions obtained 
showed that the approximate methods of [6-9] were not sufficiently accurate. 

Since only approximate solutions [7-9] are  known for an arb i t rary  viscosity ratio (a liquid drop), in 
this paper we discuss the numerical solution of the Navier-Stokes  equations for the flow of a liquid inside 
and outside a drop subject to compatibility conditions at the boundary. The solution is constructed as a 
function of three parameters  - the Reynolds numbers in the drop and in the surrounding liquid, and the 
viscosity ratio. 

Fundamental Equations and Boundary Conditions. If the origin of coordinates is at the center of the 
drop and the polar axis lies in the direction of the flow, and we note that, by symmetry,  the solution is in- 
dependent of the azimuthal angle ~, then the Navier-Stokes  equations for the stream function ~, in non- 
dimensional variables, are 

Re [ OtF 0 (rs_~nO) O~ 0 ( ~ ) ] . s i n O = E ~ ( ~ r s i n O )  ' (1) 
-7 ao o - 7  "-go- 

E2T § ~r sin 0 = 0, (2) 
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where  

= Or - - ~  + r ~ 00 si--nO- " ; 

r is a nondimensional  coordinate  in units of the radius of the drop; 0 is the polar  angle (0 < 0 _-< ~). 

Equations (1) and (2) hold both inside and outside the drop; the va r iab les  relat ing to the inside region 
will be denoted by the subsc r ip t  1, those for  the outside region,  by the subsc r ip t  2. 

Equations (1) and (2) a r e  solved subject  to the following boundary conditions: 

at  the su r face  of the drop (r = 1): 

inside the drop: 

v,1 = v,s = O, (3) 

v~ = vos' (4) 

(~,& = (~,0)=,; (5)  

~Jrl; ~}O1]r.4.0::~ (X); (6) 

fa r  f rom the drop the liquid veloci ty  is equal to the veloci ty  of the incident flow: 

(7) 

Here  v r and v0, the normal  and tangential  veloci ty  components  of the liquid, a r e  given by the equations 

1 OT 1 O~ 
V r . . . .  ; O0 . . . . .  ; 

r 2 sin 0 00 r sin 0 Or 

and r r0  is the tangential  component  of the s t r e s s  tensor .  ~ 

The boundary conditions, in t e r m s  of ,I, and ~ are :  

: inner region: 

outer  region: 

"T'l=Oon the boundary of the region (0~ '0;  O-~a; r=O; r= l ) ;  

~1~0  :Oil the axis of symmetry ( 0 = 0 ;  O = n ;  r =  0); 

sin 0 Or s . ' 

~2=0 for 0=0; 0=~; r - l ;  

�9 ~ 1 
. - - s i n 2 0  for r-~-oo; 

r 2 2 

~2=0 fm 0~-0 and 0=~; 

~I~=, = -- sin O Or s ; 

~2-+0 for r-+oo. 

The compat ib i l i ty  conditions a re :  

if the liquid does not sl ip at the boundary: 

01F1 r=~---- 0~2 ~=[ 
Or Or ' 

continuity of tangential  components  of the s t r e s s  t ensor :  

!* (2 0~1 O~TI )  = ( 2  0~2 
Or OrS ,=i Or OrS ]r=l ' 

where ~ =#I/#2 is the ratio of the coefficients of dynamic viscosity of the inner and outer liquids. 

(8) 
(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

( 1 7 )  
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Fig.  1. S t reaml ine  pa t t e rn  at  Re i = 50, 
Re 2 = 100 a n d ~  = 1 (1-~1_= 0.005, 2 ) ~  t 
= 0.020, 35 %t = 0.040, 4) ~t = 0.065, 5) 
%~ - o.o9~, 65 ~ = 0.020, 7) ~2 = 0.i00, 
85 '!' 2 = 0.200, 9) ~2 = 0.400). 

N u m e r i c a l  Solution. 
d iscont inuous  coef f ic ien ts .  
t ions  in the inner  reg ion :  

1) we in t roduce  the new unknown "pe r tu rba t ion"  funct ion ~* such that  

= 1 r~ sin2 0 + ~*; 
2 

2) we make  an inve r s ion  of  the  ex te rna l  reg ion  in the unit s e m i c i r c l e  by  means  of  the coord ina te  
t r a n s f o r m a t i o n  p = 1 / r .  

These  t r a n s f o r m a t i o n s  make  it poss ib le  to solve  the ex te rna l  p rob lem in a finite r eg ion  with z e r o  
value of  r  when p = 0. The boundary  condi t ions  for  ~*  a r e  

The p r o b l e m s  can be cons ide r ed ,  as  in [13, 14], as  a p r o b l e m  fo r  equat ions  with 
To solve it we use a net  point  method.  F i r s t  we make  the fol lowing t r a n s f o r m a -  

(185 

~ r , ~  0 for 0 = 0  and, 0 ~ ;  (195 
1 v~*[~=L --= -- --~ sin ~ O; (20) 

~*lo=o = O. (215 

Then,  in a c c o r d a n c e  witta the finite d i f fe rence  method [15, 16] we wr i t e  the Eqs .  (1) and (2) f o r m a l l y  
in nons t a t iona ry  f o r m :  

O~ 2 E2(~rsinO) + 1 JOy? 0 ( ~ ) OV~ 0 ( ~ ) ] .  
o~-~e " rs in0  7 ~ ' - ~ -  ~ - -  00 0-7- r~--~.e ' (22) 

a t - -  = E ~  + ~r sin 0, (23) 

We in t roduce  the t ime  s tep  lengths  71 and T 2 fo r  the t ime  t 1 and  t2, so tha t  t m = nTl, t2n = n72, whe re  
n = 0, 1, 2 . . . . .  We choose  the s tep length  in the angu la r  coord ina te  as  the cons tan t  ~ = v/M; Ok = ek,  k = 0, 
1 . . . .  , M. In the coord ina t e s  r and P we choose  va r i ab le s  so that  

rl = Z g j ,  g~=r~+l--r i, i=0 ,  l, 2 . . . .  , N, 
/=0 
i--I 

Pi= Z h~, h~=p~+l--pi; i=O, 1, 2, .. E. 
i=0 
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Fol lowing  the  decoupl ing  s c h e m e  we have  chosen  we a r r i v e  at  a d i f f e r ence  f o r m u l a t i o n  of the p r o b l e m :  

f o r  the  inne r  r eg ion :  
I ! 

n--i- -- n-}- 
~, 2 n , 1 ( 2 1 6~],k) 

�9 ~ " = ~ 6r ~ ' r~ Re~ r i sin O~ 60 " 

1 

• +r 
6r 

I 
I 6T?,~ rn+ y .  (24) 

- -  + r?. s in  0~ " 6 - 0 -  ~ ' ~  ' 
l 

a"+' "+ 62;'n+! 
+ - -  W [ " 6 0  ~ -  

T I f i 

1 (2cos0~  6W,~/6~"+~.~ 
Fs in0~ Re~ + 6r ] 60 

l 
~n+1 ~trn n+ y 

�9 ~ ~r  ~ 

sin ~0~ R-~.-i-c~ 6r ]~e'~ J {25) 

- -  + kl~,~' rl sin 0~; (26) 

! 
W~+~ W n+ ~- [ 

~,~ - -  ~,~ 1 8 ~ T ~  +~ 

%. r [  [ 60~ 
ctg O~ + (1 - -  kl) r~ sin O~ ~.~ . (27) 

F o r  the  o u t e r  r eg ion  in the  v a r i a b l e s  p and 0 we have:  

1 

~,~ --~,~ _ 20~ 6 ~ , ~  ~ , _ _ _ _  + . �9 ~;,~ ( 2 8 )  
�9 1 Re~ 6p ~ +- p~ \ sin O~ " ~ + cos O~ 6p sin O~ 

! 

( 
z 1 = - - R %  " ~  -}- p~\R%tgO~ -}-s inO~-  sinO a " 69 J 60 

9~ [ 2 aT* ;  ] 
sin~ 0h ~ ~ --  Pl cos 0k ~ ] 

1 , I 1 

,~ v 6v : +in ++, 
y ~  - -  P i  6p~ 69 P i  

! 

i , k  - -  i , k  : O ~  ' " 

% 60 ~ tg Oa 

(29) 

(3o) 

6"F*~+t -}- (1 - -  ;%) sin 0~ ?n+l (31) 
60 Pi 

w h e r e  f ( r i ,  Ok, tn) = fn ,.; Xl ' and X 2 a r e  p a r a m e t e r s  def ined in the i n t e rva l  [0, 1]; 5/50;  6 /6 r ;  5/50; 52/502; 

62/5r2; 52/502 a r e  t h r e e - p o i n t  d i f f e r e n c e  d e r i v a t i v e s .  The  f i r s t  o r d e r  d e r i v a t i v e s  a r e  we igh ted ,  fo r  e x a m p l e ,  

6 f ~  . . . .  
8----6-- = m  fi.k+,--fi,k~ F ( 1 - -  m) f~,k--fi.~-ia ' (32) 

w h e r e 0 _ <  m-<  1. 

The  b o u n d a r y  condi t ions  (8), (19), (20), (13), and (15) a r e  a p p r o x i m a t e d  by spec i fy ing  �9 and ~ on the 
bounda ry  l i nes  of the  net.  The  b o u n d a r y  condi t ions  (10) and (14), t o g e t h e r  wi th  (16) and (17) a r e  a p p r o x i -  
m a t e d  a s  fo l lows.  

Suppose we know ~I, on s o m e  l ine .  To obtain the bounda ry  condit ion fo r  ~ on the fol lowing l ine we have  
to ca lcu la te  0~ i / a r l  r = l, aqi2/3rlr  = t, a ~ t / a r 2 [ r  = 1, and 32~2/3r2] r = t. But in ca lcu la t ing ,  fo r  e x a m p l e ,  
O ~ t / a r [ r  = 1 = 5~ and 0q,2/0r[ r = t = 5~ d i r e c t l y  f r o m  the r e s u l t s  on the known l ine ,  it m a y  happen  tha t  con -  
di t ion (19) does  not hold. 

Hence ,  h e r e  we  use  the fol lowing i t e ra t ion  p r o c e s s :  we choose  51, 52, and an addi t ional  p a r a m e t e r  
2/(0 -< T -< 1) so  tha t  

v61 + (i -- 7) 6~ = 76~* + (i -- 7) 6~, (33) 

61 = 6 2. 

I f  the va lues  of  the s t r e a m  function in the g iven l ine  s a t i s f y  (16), the p a r a m e t e r  7 is u n n e c e s s a r y .  I f  
not,  we choose  s o m e  i n t e r m e d i a t e  va lue  of 6(52 = 52 = 6): 

6 = 761" + (1 - -7)  (5"2. (34) 
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Fig. 2. Vort ici ty distribution at the surface of 
the sphere (1) the Hamielec solution [11] for a so-  
lid sphere at Re~ = i00; 2, 3) the solution obtained 
in this paper  for  a liquid drop at Re i = 50, Re 2 
= 100, # = i and Re i = i00, Re 2 = 200, p = i; 4) the 
Hamielec solution [1i] for a gas bubble at Re 2 
= 100; 5) the Hadamard solution [1] for g = 1.0 
in deg. 

We find 51 and 52 from a Taylor  expansion in 
the neighborhood of the boundary and the values of 
the s t r eam function on two lines of the net neares t  
the boundary. Thus, for the inner region we have 

2 

6~ = gh-'vF~-~ - -  (gN-2 + g~-i) ~ vFM-r (35) 
ga-2 gJv-z (g~v-2 + gA,-l) 

Conditions (10) and (14), in conjunction with 
(17) are  approximated in accordance with the same 
principle.  As a resul t  of this p rocess ,  the compat i -  
bili ty conditions are  automatical ly satisfied as t ~ oo 

The solution is calculated as follows. F rom 
the known values of ,I, on the preceding line we calcu-  
late ~l and ~2 on the boundary for  the new line. Then 
separately,  in the inner region, f rom equations (24)- 
(27), and in the outer region, f rom equations (28)- 
(31), we determine success ively  ~ on the (n + 1/2) 
line and ~P on the (n + 1) line. Then the calculation 
is repeated. Equations (24)-(31) are  solved by the 
method of iteration. 

The above algorithm was written as a p rogram in ALGOL 60 and t ransla ted by the t rans la to r  TA-IM. 
The calculations were ca r r i ed  out on a B~]SM-4 computer.  For  the f i rs t  calculations the initial line was 
taken as the Hadamard solution [1], obtained as the solution of the equation E2(E2~). The step length in the 
radial  coordinate was variable,  being refined at the liquid boundary. Thus, for example, in the outer r e -  
gion 

p~-- s m ~ ,  i=0,1 . . . . .  E. 

To verify that the method could be applied over  a wide range of Reynolds numbers ,  a variant  with the 
pa ramete r s  Re 1 = 100, R~ 2 = 200, ~ = 1 and initial line corresponding to the Hadamard solution for  p = 1 was 
f i rs t  computed. 

0.4, " \ ~ k \  I 
' \ \ ) , , I  �9 

Fig. 3. Pressure distribution at the surface of the 
sphere (1) the Hamielec solution [11] for  a solid 
sphere at Re 2 = 100; 2, 3) the solution obtained in 
this paper  for  a liquid drop at Re I = 50, Re 2 = 100, 

= l a n d R e  1=100 ,  Re 2 = 2 0 0 , ~ = 1 ;  4) t h e H a m i -  
elec solution [11] for a gas bubble at Re 2 = 100. 
0 in deg. 

Because of the res t r ic t ions  imposed by She 
B]~SM-4, a quite coarse  net (M = N = E = 10) was 
chosen. This prevented us f rom determining the 
position of the point of flow breakaway or  the drag 
coefficient to a sufficient degree of accuracy .  For  
a more  exact solution of the problem we have to 
used a refined net and computers  of higher speed. 

D I S C U S S I O N  OF R E S U L T S  

The resul ts  of the numerical  calculations are  
shown in Figs.  1-5. Fig. 1 shows the s t reamline 
pattern for flows in a moving drop and in the s u r -  
rounding medium at Re I = 50, Re 2 = 100, /~ = 1. We 
note that the geomet ry  of the inner flow at Re ~ 100 
is little different f rom the Hadamard flow (Re < 1). 
Some flow a symmet ry  is observed.  The center  of 
circulat ion of the liquid is displaeed by approxi-  
mately 8 ~ towards the incident flow. The maximum 
value of the s t r eam function in the inner region in- 
c reases  approximately three t imes by comparison 
with the Hadamard solution for p = 1, which c o r -  
responds to a more  intense circulat ion of the liquid. 
A weak a symmet ry  in the external flow is also no- 
t iced and the s t ream line departs  f rom the sphere 
at the r ea r .  
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Fig. 4 Fig. 5 

Fig. 4. Vortex intensity distribution for the Hadamard solu- 
tion [1] f o r # = l ( ~ l = ~ 2  = D :  1 ) ~ = 0 ,  2) ~=0.25 ,  3 ) ~ = 0 . 5 0 ,  
4) g = 0.75, 5) g = 1.00. 

Fig. 5. Vortex intensity distribution for Re 1 = 50, Re z = 100, 
#=1 (~1  =~2 =~) :  1 ) ~ = 0 ,  2) ~=0.25 ,  3) ~=0.75 ,  4) ~=1 .50 ,  
5) ~=2 .50 ,  6) ~=3.50 ,  7) [ = 4 . 0 0 .  

Figures  2 and 3 show the vort ic i ty  and p re s su re  distributions at the surface of the drop for Re 1 = 50, 
Re 2 = 100, # = 1, and Re t = 100, Re 2 = 200, p = 1 compared with Hamielec 's  resul ts  [11] for a solid sphere 
and a gas bubble at Re~ = 100. The comparison is made under the condition that the stagnation point is 
taken as the origin for  measur ing the polar  angle and that the origin for  the p res su re  is at the r ea r  point. 
As is to be expected, the p re s su re  and vort ic i ty  distribution curves at the surface of a liquid drop lie be-  
tween those corresponding to the limiting cases  of a solid sphere and a gas bubble. 

Figures  4 and 5 give the vortex intensity distributions (lines ~ = const) for  Re < 1 and # = 1 for the Hadam- 
ard  solution and as computed in this paper  for  Re 1 = 50, Re 2 = 100, /~ = 1. Since p = 1 in the examples quoted, 
the l ines corresponding to a single value of ~ in different regions are  closed on the sphere.  

I t  follows f rom the calculations that the maximum vort ic i ty  on the boundary is displaced in the d i r ec -  
tion of the incident flow, increasing in absolute value by a factor  of a lmost  four. Comparing Figs.  4 and 
5, we note that as Re increases ,  the vortex intensity drifts  downstream. 

The concentrat ion of vortex intensity in a thin s tr ip at the leading surface of the sphere indicates the 
tendency of the formation of a boundary layer  around the drop at moderate Re. Conversely,  inside the drop 
the distribution of vortex intensity is such that no s imi lar  tendency is detected. 

r 
0 

v r ~ V 0 

%0 
Re = 2V~a/u 
V~ 

v = f~ /P  
p 

p 

N O T A T I O N  

is the radial coordinate;  
is the polar  angle; 
are  the radial and tangential velocity components of the liquid; 
is the tangential component of the s t r e s s  tensor;  
is the Reynolds number;  
is the velocity of the incident flow; 
is the coefficient of kinematic viscosity;  
is the coefficient of dynamic viscosity;  
is the density; 
is the drop radius; 
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~'1, "r2 
0" 

g, h 
E, N, M 
T, )~, m 

is the stream function; 
is the vorticity; 
are  the time step lengths; 
is the angular step length; 
are  the radius step lengths; 
are  the numbers of lines of the net; 
are  the parameters of the difference scheme. 

S u b s c r i p t s  

1 denotes the inner region of the drop; 
2 is the outer region; 
i , k  are the numbers of the lines in the net. 
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