THE MOTION OF SPHERICAL DROPS IN THE FLOW
OF A VISCOUS LIQUID

V. Ya. Rivkind, G. M. Ryskin, UDC 532.516
and G. A, Fishbein

We consider the flow of a viscous fluid past a spherical drop at moderate Reynolds numbers,
We give the numerical solution of the Navier—Stokes equation for the flow of the liquid inside
and outside a drop subject to compatibility conditions at the boundary.

The study of the motion of drops or gas bubbles in liquid media is closely associated with the problem
of designing industrial chemical apparatus for many important problems in liquid extraction.

In practice drops move at moderate Reynolds numbers (from several tens to several hundreds). Simi-
lar flow conditions have received little study,

This paper is devoted to the solution of the problem of the flow of a viscous liquid past a single drop
at moderate Reynolds numbers, It is assumed that the motion is uniform and rectilinear and that the drop
retains its spherical form.

The exact solution is known [1, 2] for Re < 1, On the other hand, for sufficiently large Reynolds
numbers the problem of the flow past a gas bubble has been considered within the framework of hydrodyna~
mic boundary layer theory by Levich [3] and Moore [4]. TFor a liquid drop similar solutions were investi-
gated by Chao [5] assuming that there was a boundary layer at both sides of the boundary of the drop.

For moderate Reynolds numbers an approximate solution was given in [6-9] of the problem of the flow
past a solid sphere or a liquid drop using the Galerkin method, A critical review of the solutions obtained
by the above authors can be found in [10]. In recent investigations Hamielec and his co-authors [11, 12]
discussed the numerical solution of the Navier —Stokes equations for flows with infinite (for a solid sphere)
or zero (for a gas bubble) viscosity ratios at Reynolds numbers up to Re ~ 200, The solutions obtained
showed that the approximate methods of [6-9] were not sufficiently accurate.

Since only approximate solutions [7-9] are known for an arbitrary viscosity ratio (a liquid drop), in
this paper we discuss the numerical solution of the Navier —Stokes equations for the flow of a liquid inside
and outside a drop subject to compatibility conditions at the boundary. The solution is constructed as a
function of three parameters — the Reynolds numbers in the drop and in the surrounding liquid, and the
viscosity ratio.

Fundamental Equations and Boundary Conditions. If the origin of coordinates is at the center of the
drop and the polar axis lies In the direction of the flow, and we note that, by symmetry, the solution is in~
dependent of the azimuthal angle ¢, then the Navier—Stokes equations for the stream function &, in non-
dimensional variables, are
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r is a nondimensional coordinate in units of the radius of the drop; ¢ is the polar angle (0 < 6 < 7).

Equations (1) and (2) hold both inside and outside the drop; the variables relating to the inside region
will be denoted by the subscript 1, those for the outside region, by the subscript 2.

Equations (1) and (2) are solved subject to the following boundary conditions:

at the surface of the drop {r = 1):

Upy = U,y = 0, 3)
Ugy = Ugs, (4)
(Trﬂ)l = (Tre)Q; (5)
inside the drop:
Ui Vog)q 7= 05 (6)

far from the drop the liquid velocity is equal to the velocity of the incident flow:
2 %
l/ Ure 1 Vb2

Here vy and vg, the normal and tangential velocity components of the liquid, are given by the equations
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and Tpg is the tangential component of the stress tensor.,
The boundary conditions, in terms of ¥ and {are:

‘Inner region:

W, =0 on the boundary of the region (8:_'0; b=mn; r=0; r=1); (8)
§1¥O,on the axis of symmetry (8=0; 6=m; r=0), (9)
_ 1 Py, .
Gl = sing 9 o (10)
outer region:
Y,=0 for 8=0; 6=m; r=1; (11)
Yy —»—1— sin?® for r— oo; (12)
r? 2
;=0 for 6=0 and O=um; (13)
1 Y, )
Glrer = sin o |-, (14)
;=0 for r—>oo. (15)
The compatibility conditions are:
if the liquid does not slip at the boundary:
o, _ 9%, : (16)
or r=1 or r=1
continuity of tangential components of the stress tensor:
ov, BV oY, oV -
2 1 1 =1{2 2 Y e
: ( or or? )r:] ( Or or? )r:l ’ <17)

where y =p,/uy is the ratio of the coefficients of dynamic viscosity of the inner and outer liquids,
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Fig. 1. Streamline pattern at Re; = 50,
Re, =100 and p = 1 (1~ = 0,005, 2) I
=0.020, 3) ¥ =0.040, 4) ¥ = 0.065, 5)
¥ =0.095, 6) ¥, = 0.020, 7) T, = 0.100,
8) ¥, = 0,200, 9) ¥, = 0.400).

Numerical Solution. The problems can be considered, as in [13, 14], as a problem for equations with
discontinuous coefficients, To solve it we use a net point method, TFirst we make the following transforma-

tions in the inner region:

1) we introduce the new unknown "perturbation" function ¥* such that

qr=~; P2 Sin® 6 + W: (18)

2) we make an inversion of the external region in the unit semicircle by means of the coordinate
transformation p = 1/r.

These transformations make it possible to solve the external problem in a finite region with zero
value of ¥* when p =0, The boundary conditions for ¥* are

Y*=0 for 08=0 and Q=g (19)
WAy == sinto; (20)
PH,_o=0. (21)

Then, in accordance with the finite difference method [15, 16] we write the Egs. (1) and (2) formally
in nonstationary form:

%8 _ 2 Ersing), 170¥ 9 _§_>__a£.i_§_ . (22)
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N _ B 4 trsing, 23)
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We introduce the time step lengths 7; and T, for the time t; and t,, so that t;, =n7,, t,, =n7,, where
n=0,1,2,.... We choose the step length in the angular coordinate as the constant 0 = 7/M; 6k =0k, k=0,

1,...,M. In the coordinates r and p we choose variables so that
—1
r; =2 g &=l — T i=0, 1, 2, ... . N,
j=0
—1
L= 2 kjy ki———"piﬂ—*pi; i=0,1,2, ..., E.
=0
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Following the decoupling scheme we have chosen we arrive at a difference formulation of the problem:

for the inner region:
1
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For the outer region in the variables p and 6 we have:
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where f(ry, 0k, ty) = f{l I Ay, and 1y are parameters defined in the interval [0, 1]; 6/06; 6/61; 6/6p; 62/662
52/61% 62/60% are thred-point difference derivatives. The first order derivatives are weighted, for example,

8in R
56 =™ G +

| (32)
o

’

—m)

where 0 = m=1,

The boundary conditions (8), (19), (20), (13}, and (15) are approximated by specifying ¥ and ¢ on the
boundary lines of the net, The boundary conditions (10) and (14), together with (16) and (17) are approxi-
mated as follows,

Suppose we know ¥ on some line, To obtain the boundary condition for ¢ on the following line we have
to calculate 3%,/8rly _ 1, 8%,/0rl, 4, 8%, /0v%, _y, and 8%,/0r% , _ . But in calculating, for example,
Y, /0rlp = ¢ = 67 and a¥,/8 rlp == 65 directly from the results on the known line, it may happen that con-
dition (19) does not hold.

Hence, here we use the following iteration process: we choose 0y, 65, and an additional parameter
v(0 =y = 1) so that

P8, + (1 — )8, =8 + (1 —y) &,
8, = b,

If the values of the stream function in the given line satisfy (16), the parameter v is unnecessary, If
not, we choose some intermediate value of 6(6; =6, =6):

(33)

8= 907 -+ (1— 1) 85 (34)
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Fig. 2. Vorticity distribution at the surface of
the sphere (1) the Hamielec solution {11] for a so-
lid sphere at Rey = 100; 2, 3) the solution obtained
in this paper for a liquid drop at Re; = 50, Re,
.=100, =1 and Re; = 100, Rey =200, p = 1; 4) the
Hamielec solution [11] for a gas bubble at Re,
=100; 5) the Hadamard solution [1] forp=1.0

in deg.

We find 6} and 6; from a Taylor expansion in
the neighborhood of the boundary and the values of
the stream function on two lines of the net nearest
the boundary. Thus, for the inner region we have

5 1* _ By ¥y — @y o+ 8y ¥y, ) (35)
Ev—28n—1 8Nzt &y_))

Conditions (10) and (14), in conjunction with
(17) are approximated in accordance with the same
principle. As a result of this process, the compati-
bility conditions are automatically satisfied as t — «

The solution is calculated as follows. From
the known values of ¥ on the preceding line we calcu-~
late ¢; and &, on the boundary for the new line. Then
separately, in the inner region, from equations (24)-
(27), and in the outer region, from equations (28)-
(31), we determine successively £ on the (n +1/2)
line and ¥ on the (n + 1) line, Then the calculation
is repeated. Equations (24)-(31) are solved by the
method of iteration.

The above algorithm was written as a program in ALGOL 60 and translated by the translator TA-IM,
The calculations were carried out on a BESM-4 computer. For the first calculations the initial line was
taken ag the Hadamard solution [1], obtained as the solution of the equation E(E%), The step length in the
radial coordinate was variable, being refined at the liquid boundary, Thus, for example, in the outer re-

gion

To verify that the method could be applied over a wide range of Reynolds numbers, a variant with the
parameters Re; = 100, Ré, =200, p =1 and initial line corresponding fo the Hadamard solution for u =1 was

first computed.

N\ \

\.\k\‘o 20 __ = g
\\ PN L//// ,-/

\

(= £

L Q
//
/
/

(=)

>
|
N

/

/
-8 2 .

-z 7.

Fig. 3. Pressure distribution at the surface of the
sphere (1) the Hamielec solution [11] for a solid
sphere at Re, = 100; 2, 3) the solution obtained in
this paper for a liquid drop at Re; = 50, Re, = 100,
p =1 and Re; =100, Re, =200, p=1; 4) the Hami-
elec solution [11] for a gas bubble at Re, = 100.

6 in deg.
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Because of the restrictions imposed by the
BESM-4, a quite coarse net (M =N = E = 10) was
chosen, This prevented us from determining the
position of the point of flow breakaway or the drag
coefficient to a sufficient degree of accuracy. For
a more exact solution of the problem we have to
used a refined net and computers of higher speed.

DISCUSSION OF RESULTS

The results of the numerical calculations are
shown in Figs, 1-5, Fig. 1 shows the streamline
pattern for flows in a moving drop and in the sur-
rounding medium at Re; = 50, Re, =100, p =1, We
note that the geometry of the inner flow at Re ~ 100
is little different from the Hadamard flow (Re < 1).
Some flow asymmetry is observed. The center of
circulation of the liquid is displaced by approxi-
mately 8° towards the incident flow. The maximum
value of the stream function in the inner region in-
creases approximately three times by comparison
with the Hadamard solution for p =1, which cor-
responds to a more intense circulation of the liquid.
A weak asymmetry in the external flow is also no-
ticed and the stream line departs from the sphere
at the rear.



Fig. 4 Fig. 5

Fig. 4. Vortex intensity distribution for the Hadamard solu-
tion [l foru=1 (=85 =£): 1)£=0, 2) £{=0.25, 3) £=0.50,
4) £=0.75, 5) £=1.00.

Fig. 5. Vortex intensity distribution for Re, = 50, Re, =100,
p=1(=5=0): 1)¢=0, 2) £{=0.25, 3) £{=0.75, 4) {=1.50,
5) £=2,50, 6) £{=3.50, 7) £=4.00,

Figures 2 and 3 show the vorticity and pressure distributions at the surface of the drop for Re, = 50,
Rey =100, p =1, and Re; = 100, Re, =200, p =1 compared with Hamielec's results [11] for a solid sphere
and a gas bubble at Re, = 100. The comparison is made under the condition that the stagnation point is
taken as the origin for measuring the polar angle and that the origin for the pressure is at the rear point,
As is to be expected, the pressure and vorticity distribution curves at the surface of a liquid drop lie be-
tween those corresponding to the limiting cases of a solid sphere and a gas bubble,

Figures 4 and 5 give the vortex intensity distributions (lines ¢ = const) for Re < 1and p = 1 for the Hadam-
ard solution and as computed in this paper for Re; = 50, Re, =100, p =1, Since p =1 in the examples quoted,
the lines corresponding to a single value of ¢ in different regions are closed on the sphere.

It follows from the calculations that the maximum vorticity on the boundary is displaced in the direc-
tion of the incident flow, increasing in absolute value by a factor of almost four, Comparing Figs, 4 and
5, we note that as Re increases, the vortex intensity drifts downstream.

The concentration of vortex intensity in a thin strip at the leading surface of the sphere indicates the
tendency of the formation of a boundary layer around the drop at moderate Re. Conversely, inside the drop
the distribution of vortex intensity is such that no similar tendency is detected.

NOTATION
r is the radial coordinate;
0 is the polar angle;
Vps Vg are the radial and tangential velocity components of the liquid;
Tpd) is the tangential component of the stress tensor;
Re = 2V 2 /v is the Reynolds number;
Vo is the velocity of the incident flow;
v=pu/p is the coefficient of kinematic viscosity;
M is the coefficient of dynamic viscosity;
P is the density;
a is the drop radius;
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0 is the stream function;

¢ is the vorticity;

Tis Ty are the time step lengths;

o is the angular step length;

g, h are the radius step lengths;

E,N, M are the numbers of lines of the net;

Y, A, m are the parameters of the difference scheme,

Subscripts

1 denotes the inner region of the drop;
2 is the outer region;
i, 'k are the numbers of the lines in the net.
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